欢迎来到在线考试题库网
在线考试题库官网
登录
注册
首页
医学类
建筑类
财经类
全部科目
>
大学试题
>
理学
>
数值分析
搜题找答案
问答题
计算题
证明矩阵
对于
是正定的,而雅可比迭代只对
是收敛的。
【参考答案】
点击查看答案
上一题
目录
下一题
相关考题
问答题
设A与B为n阶矩阵,A为非奇异,考虑解方程组 其中。 (a)找出下列迭代方法收敛的充要条件 (b)找出下列迭代方法收敛的充要条件 比较两个方法的收敛速度。
问答题
用高斯-塞德尔方法解Ax=b,用xi(k+1)记x(k+1)的第i个分量,且 (a)证明; (b)如果ε(k)=x(k)-x*,其中x*是方程组的精确解,求证: 其中。
问答题
设有方程组Ax=b,其中A为对称正定阵,迭代公式 试证明当0<ω<2/β时上述迭代法收敛(其中0<α≤λ(A)≤β)。
关注
顶部
微信扫一扫,加关注免费搜题